BREAK OUT SESSION

Big Data Systems Session Leaders Magdalena Balazinska & Kunle Olukotun

Overarching Themes in this Area

- Democratizing big data
- Data acquisition and cleaning
- Making complex analytics fast
- Data velocity
 - Need to process data streams from IoT, video, other
- Data variety
 - Need to process graphs, structured, unstructured, multimedia
- Data volume
 - Must integrate and analyze immobile data, distributed around world
- Reproducibility, long-term preservation, and sharing

Recent Successes (last 3 years)

- Increasingly efficient, open-source systems

 Spark, Impala, Myria, Asterix, GraphLab, etc.
- Growing cloud service offerings
 - Data management and also ML services
- Growing availability of ML algos and datasets
- Knowledge bases
- Systems that go from high-level DSLs to hardware-specialized implementations
- Big science projects (e.g., LHC and SDSS/LSST)
- Tools for data science and collaboration

Major Obstacles Impeding More Rapid Progress

- Data science education across domains
- Cloud services can be hard to use cost-effectively
- ML and DB remain poorly integrated
- We settled on commodity but need to explore other architectures
- Need to unify abstractions
 - Big data is a mix of relational algebra, linear algebra, ML, etc.
- Data science is a high-touch business
 - How to choose ML algo? Tune data analysis pipelines?
 - Can we have even higher-level interfaces for data science?
 - Data in many different formats
- Data correctness, corruption, long-term preservation
- Hard to share:
 - Create metadata automatically
 - Make data not only available but easily accessible
 - Risks associated with data sharing (burden, responsibility, scooped)

Areas that Need More Attention

- Cross-disciplinary data science education
 - Across levels undergraduate, graduate, master's
- Storage remains the bottleneck
- Compute
 - Future of hardware is increasingly heterogeneous
 - but still no abstractions for shielding complexity
- Cross-stack innovations:
 - PL, compiler, database, OS, networking, hardware
- End-to-end analysis pipelines
 - Need to support users end-to-end
- Reproducibility, sharing, and reuse
- Long-term curation and preservation

• Democratizing Big Data

- Productivity tools and methods
 - End-to-end data science pipelines
 - Easier-to-use cloud analytics systems
 - Cost-effective cloud analytics
- Expressing complex analysis
 - Data management + ML + ...
 - Also leverage legacy code
 - Common analytic frameworks (laptop to cluster/clouds)
 - Higher-level interfaces to data analytics
 - SQL, visualizations, natural language, other?
- Correctness and auditability
- Applications of data science

• Reproducibility

- Data sharing and preservation
- Code sharing and preservation
- Responsibility and ethics of data analysis
- Long-term preservation

Infrastructure

- A data observatory (a single, logical place)
- Partner with cloud providers
- Leverage existing HPC centers
- Explore what is the best, global approach

- Data acquisition and cleaning
 - Data cleaning and integration
 - Managing probabilities, errors, approximations
 - Data is not always precise: density distributions
 - Computation/analysis uses approximations

- Making complex analytics fast
 - Interactive analytics
 - Innovation in architectures
 - Across-the-stack innovations
 - Benchmarks: data sets, analytics, etc.
 - In-memory analytics
 - Complex analytics
 - Mobile devices or even IoT devices
 - Federated analytics
 - HPC + dataflow systems

- Data velocity
 - Stream processing
- Data variety
 - Different types of data structured, unstructured, etc.

Data volume

- Manage data value over time
- Analysis over data distributed across data centers